

Towards higher throughput GMO testing: matrix-based screening approaches and multi-target detection systems

Alexandre Angers, Francesco Gatto

Molecular Biology & Genomics Unit Institute for Health and Consumer Protection (IHCP) European Commission Joint Research Centre

2nd International Workshop of GMO-analysis Networking 21 July 2015 Varese, Italy

The need for screening in traceability of GMOs

The number of new GMOs is increasing constantly

Employing only event-specific methods for GMO testing thus becomes impractical

Time and cost effective strategies include the development of **screening approaches** using element- or construct-specific detection methods

Screening strategies for GMO testing: main concerns

1. Planning.

How can I make sure the methods used in the screening strategy will not "miss" one of the GMO I want to screen for?

2. Drawing conclusions

How can I gain the most information from the results of the screening results, i.e. narrowing down the pool of potential candidates.

A number of "**GMO target matrices**" have been developed to support the planning and evaluation of screening approaches

Detection

Information on GMO detection by screening methods

Event annotation

- ★ Many public sources of information (eg the BCH LMO registry)
- Elements given the same name in various GM events can differ at the level of the DNA sequence

Information on GMO detection by screening methods

Event annotation **Event sequence**

- + Allows direct prediction of detection by bioinformatics tools
- Event sequences difficult to obtain

Information on GMO detection by screening methods

Event annotation Event sequence Laboratory testing

- + Gives a "formal" answer for the detection of an event by a detection method (i.e. not a prediction)
- Very high confidence in the experiment is crucial (sample purity, quality of execution, ...). Significant work required.

Examples of available matrices

GMOfinder

Specific profile of 15 elements and constructs for >350 GMOs
Information taken from experimental data, literature, applications for
GMO authorisation and other sources

Additional information: Gerdes, Lars, Ulrich Busch, and Sven Pecoraro. "GMOfinder—a GMO screening database." *Food Analytical Methods* 5.6 (2012): 1368-1376.

GMOseek

Provides an overview of >270 genetic elements and their occurrence in >320 GMOs

Additional information: Block, Annette, et al. "The GMOseek matrix: a decision support tool for optimizing the detection of genetically modified plants." <u>BMC bioinformatics</u>14.1 (2013): 256.

8

The JRC GMO-Matrix application

Predicts (in silico) which GMO detection method(s) will detect which GMO event(s)

Links the information between

- 1. The JRC GMOMETHODS database
- 2. The internal Central Core Sequence Information System (CCSIS), a database that hold sequences of GMO inserts.

GMOMETHODS: The European Union Database of Reference Methods for GMO Analysis

Available at: http://gmo-crl.jrc.ec.europa.eu/gmomethods/

More information: Bonfini et al. Journal of AOAC international (2012)

Mining of the public DNA sequence databases for GMO sequences

1 000 000 000s of sequences

Legal Notice Privacy statement English (EN)

European Commission	JOINT RESEARCH CENTRE European Union Reference Laboratory for GM Food and Feed					
European Commission > JRC > IHCP > EU-RL GMFF						
EU-RL GMFF Home	JRC GMO-Matrix					
Legal basis	1) Select GMO(s):					
Tasks and duties	By taxon(s)					
Guidance documents	and/or					
Status of dossiers	Specific GMO(s)					
Methods database	2) Select method(s):					
JRC GMO-Matrix	Event-specific					
JRC GMO-Matrix	and/or					
Event finder	Construct-specific					
[Prespotted plates]	and/or Element-specific					
Capacity building	Show Export as CSV					
ENGL						
Emergencies/ Unauthorised GMOs	Please select at least one taxon					
Contacts	Please select at least one method					
- Sancacca	Try an example matrix: All cotton events vs 'pat' and 'bar' element-specific methods Show					
	All rapeseed events vs all rapeseed event-specific methods Show					
	All soybean events vs all CaMV 35S and T-nos specific methods Show					

Available at: http://gmo-crl.jrc.ec.europa.eu/jrcgmomatrix/

More information: Angers-Loustau et al. BMC bioinformatics (2014)

From planning to analysis

Joint Research Centre

EURL-GMFF support to harmonisation of GMO screening

Reference methods

(Validation, GMOMETHODS database)

Decision-support tools

(JRC GMO-Matrix, JRC GMO-Amplicons)

EURL-GMFF support to harmonisation of GMO screening

Reference methods

(Validation, GMOMETHODS database)

Decision-support tools

(JRC GMO-Matrix, JRC GMO-Amplicons)

Ready-to-use system (Pre-spotted plates)

Pre-Spotted Plates (PSP) for GMO detection

qPCR plastic support whose wells are spotted with dried primers & probes (GMO detection assays)

Development of a GMO Screening System

I. Which assays?

II. Assay standardization for use on PSP (and re-assessment of method performance) III. Building a screening strategy: combine PSP with a Decision Support System

JRC GMO-Matrix³

Best identification strategy!

PSPs perform well and are functional

Performance of the strategy

(PSP + JRC GMO-Matrix)

Proof of concept study

Integration of PSPs in the quality system of official testing laboratories working under ISO17025 accreditation

Semi-quantitative use of ePSP

Eur Food Res Technol DOI 10.1007/s00217-011-1615-5

ORIGINAL PAPER

Applicability of the "Real-Time PCR-Based Ready-to-Use Multi-Target Analytical System for GMO Detection" in processed maize matrices

Linda Kluga · Silvia Folloni · Marc Van den Bulcke · Guy Van den Eede · Maddalena Querci

Table 5 Theoretic correlation between the $\Delta C_t,$ the dilution factor and the GM%

ΔCt	Dilution	GM%	
1	2	50.00	
2	4	25.00	
3	8	12.50	
4	16	6.25	
5	32	3.13	
6	64	1.56	
7	128	0.78	
8	256	0.39	
9	512	0.20	
10	1024	0.10	
11	2048	0.05	
12	4096	0.02	
13	8192	0.01	
14	16384	0.01	

Estimation and assessment of ΔCq Thresholds

Assessment on simulated samples

5%	2%	1%	0.5%	0.1%
\forall			\bigvee	

GM%	<0.9%	Quant.	>0.9%
0.1	99.1	0.9	0.0
0.5	58.2	41.1	0.7
1	10.5	83.2	6.3
2	0.0	17.5	82.5
5	0.0	0.7	99.3

Thank you for your attention!

