Event-specific Method for the Quantification of Cotton Line MON 15985 Using Real-time PCR

Protocol

19 June 2008

Joint Research Centre
Institute for Health and Consumer Protection
Biotechnology & GMOs Unit

Method development:
Monsanto Company

Method validated by:
Community Reference Laboratory for GM Food and Feed (CRL-GMFF)
Biotechnology & GMOs Unit
Address of contact laboratory:
European Commission, Joint Research Centre
Institute for Health and Consumer Protection (IHCP)
Biotechnology and GMOs Unit – Community Reference Laboratory for GM Food and Feed
Via Fermi 2749, 21027 Ispra (VA) - Italy
Content

1. GENERAL INFORMATION AND SUMMARY OF THE METHODOLOGY 4

2. VALIDATION STATUS AND PERFORMANCE CHARACTERISTICS 4
 2.1 GENERAL ... 4
 2.2 COLLABORATIVE TRIAL .. 5
 2.3 LIMIT OF DETECTION (LOD) .. 5
 2.4 LIMIT OF QUANTIFICATION (LOQ) .. 5
 2.5 MOLECULAR SPECIFICITY .. 5

3. PROCEDURE ... 6
 3.1 GENERAL INSTRUCTIONS AND PRECAUTIONS 6
 3.2 REAL-TIME PCR FOR QUANTITATIVE ANALYSIS OF COTTON EVENT MON 15985 ... 7
 3.2.1 General .. 7
 3.2.2 Calibration .. 7
 3.2.3 Real-time PCR set-up ... 8
 3.3 DATA ANALYSIS ... 9
 3.4 CALCULATION OF RESULTS ... 10

4. MATERIALS ... 10
 4.1 EQUIPMENT ... 10
 4.2 REAGENTS ... 10
 4.3 PRIMERS AND PROBES .. 11

5. REFERENCES .. 11
1. General information and summary of the methodology

This protocol describes an event-specific real-time quantitative TaqMan® PCR procedure for the determination of the relative content of cotton event MON 15985 DNA to total cotton DNA in a sample.

The PCR assay was optimised for use in real-time PCR instruments for plastic reaction vessels.

Template DNA extracted by means of suitable methods should be tested for quality and quantity prior to use in PCR assay. Tests for the presence of PCR inhibitors (e.g. monitor run of diluted series, use of DNA spikes) are recommended.

For the specific detection of cotton event MON 15985 DNA, an 82-bp fragment of the integration region of the construct inserted into the plant genome (located at the 3’ plant DNA region) is amplified using two specific primers. PCR products are measured during each cycle (real-time) by means of a target-specific oligonucleotide probe labelled with the fluorescent dye FAM as a reporter at its 5’ end and with the non-fluorescent quencher TAMRA at its 3’ end.

For the relative quantification of cotton event MON 15985 DNA, a cotton-specific reference system amplifies a 76-bp fragment of the cotton endogenous acyl carrier protein gene (acpI), using two specific primers and an acpI gene-specific probe labelled with FAM and TAMRA as described above.

The measured fluorescence signal passes a threshold value after a certain number of cycles. This threshold cycle is called the “Ct” value. For quantification of the amount of event MON 15985 DNA in a test sample, cotton MON 15985 and acpI Ct values are determined for the sample. Standard curves are then used to estimate the relative amount of cotton event MON 15985 DNA to total cotton DNA.

2. Validation status and performance characteristics

2.1 General

The method was optimised for suitable DNA extracted from cotton seeds containing mixtures of genetically modified and conventional cotton.

The reproducibility and trueness of the method were tested through an international collaborative ring trial using DNA samples at different GMO contents.
2.2 Collaborative trial

The method was validated in a collaborative study by the Joint Research Centre (JRC) of the European Commission. The study was undertaken with twelve participating laboratories in June-July 2006.

Each participant received twenty blind samples containing cotton MON 15985 genomic DNA at five GM contents, ranging from 0.10% to 6.0%.

Each test sample was analysed by PCR in three repetitions. The study was designed as a blind quadruplicate collaborative trial; each laboratory received each level of GM MON 15985 in four unknown samples. Four replicates of each GM level were analysed on the same PCR plate.

A detailed validation report can be found at http://gmo-crl.jrc.it/statusofdoss.htm

2.3 Limit of detection (LOD)

According to the method developer, the relative LOD of the method is at least 0.05% in 200 ng of total cotton DNA. The relative LOD was not assessed in a collaborative study.

2.4 Limit of quantification (LOQ)

According to the method developer, the relative LOQ of the method is at least 0.085% in 200 ng of total cotton DNA. The lowest relative GM content of the target sequence included in collaborative trial was 0.10%.

2.5 Molecular specificity

According to the method developer, the method exploits a unique DNA sequence in the region of recombination between the insert and the plant genome; the sequence is specific to cotton event MON 15985 and thus imparts event-specificity to the method.

The specificity of event-specific assay was experimentally tested by the applicant in real-time PCR against DNA extracted from plant materials containing the specific targets of Bollgard® II cotton (MON 15985), Bollgard® cotton (MON 531), Roundup Ready® cotton (MON 1445), Roundup Ready® canola (RT73), Roundup Ready® maize GA21, Roundup Ready® maize NK603, YieldGard® Corn Borer maize (MON 810), YieldGard® Rootworm maize (MON 863), Roundup Ready® soybean (40-3-2), Roundup Ready® canola (RT200), Roundup Ready® wheat (71800), conventional cotton, conventional maize, conventional soybean, conventional wheat, Assoria rice, barley, Basmati rice, lentil, millet, oat, peanut, pinenuts, rye berries, sunflower, Teosinte, hard wheat, buckwheat and quinoa.

According to the applicant, none of the plant materials tested, except the positive control cotton line MON 15985 and Assoria rice, gave detectable amplifications.
Assoria rice reacted unexpectedly with the event-specific detection assay of MON 15985 but positive result is considered by the applicant to be an artefact. Bioinformatics analyses conducted by the CRL-GMFF confirmed the absence of relevant matches between the primers for MON 15985 and the rice genome; this was also supported by additional tests conducted by the CRL-GMFF.

The specificity of the cotton reference assay *acp1* was experimentally tested by the applicant against DNA extracted from plant materials containing Bollgard® II cotton (MON 15985), Bollgard® cotton (MON 531), Roundup Ready® cotton (MON 1445), Roundup Ready® canola (RT73), Roundup Ready® maize GA21, Roundup Ready® maize NK603, YieldGard® corn borer maize (MON810), YieldGard® rootworm maize (MON 863), Roundup Ready® soybean (40-3-2), Roundup Ready® canola (RT200), Roundup Ready® wheat (71800), conventional cotton, conventional maize, conventional soybean, conventional wheat, Assoria rice, barley, basmati rice, lentil, millet, oat, peanut, pine nuts, rye berries, sunflower, Teosinte, hard wheat, buckwheat and quinoa.

According to the applicant, none of the plant materials tested, except the positive control cotton line MON 15985, cotton MON 531, cotton MON 1445, conventional cotton and Assoria rice gave detectable amplifications. Assoria rice reacted unexpectedly with the *acp1* assay, but this positive result is considered by the applicant to be an artefact. Bioinformatics analyses conducted by the CRL-GMFF confirmed the absence of relevant matches between the primers for *acp1* and the rice genome; this was also supported by additional tests conducted by the CRL-GMFF.

3. Procedure

3.1 General instructions and precautions

- The procedures require experience of working under sterile conditions.

- Laboratory organisation, e.g. “forward flow direction” during PCR-setup, should follow international guidelines, e.g. ISO 24276:2006.

- PCR-reagents should be stored and handled in a separate room where no nucleic acids (with exception of PCR primers or probes) or DNA degrading or modifying enzymes have been handled previously. All handling of PCR reagents and controls requires dedicated equipment, especially pipettes.

- All the equipment used should be sterilised prior to use and any residue of DNA has to be removed. All material used (e.g. vials, containers, pipette tips, etc.) must be suitable for PCR and molecular biology applications. They must be DNase-free, DNA-free, sterile and unable to adsorb protein or DNA.

- Filter pipette tips protected against aerosol should be used.
Powder-free gloves should be used and changed frequently.

Laboratory benches and equipment should be cleaned periodically with 10% sodium hypochloride solution (bleach).

Pipettes should be checked regularly for precision and calibrated, if necessary.

All handling steps - unless specified otherwise - should be carried out at 0 - 4 °C.

In order to avoid repeated freeze/thaw cycles aliquots should be prepared.

3.2 Real-time PCR for quantitative analysis of cotton event MON 15985

3.2.1 General

The PCR set-up for the taxon specific target sequence (acp1) and for the GMO (event MON 15985) target sequence should be carried out in separate vials. Multiplex PCR (using differential fluorescent labels for the probes) has not been tested or validated.

The use of maximum 200 ng of template DNA per reaction well is recommended.

The method is developed for a total volume of 50 µL per reaction mixture with the reagents as listed in Table 1 and Table 2.

3.2.2 Calibration

The calibration curves consist of five samples. The first point of the calibration curves is a 10% MON 15985 in non-GM cotton DNA for a total of 200 ng of DNA (corresponding to approximately 85,830 cotton genome copies with one genome assumed to correspond to 2.33 pg of haploid cotton genomic DNA) \(^1\).

A calibration curve is produced by plotting the Ct values against the logarithm of the target copy number for the calibration points. This can be done e.g. by means of spreadsheet software, e.g. Microsoft Excel, or directly by options available with the sequence detection system software. The copy number measured for the unknown sample DNA is obtained by interpolation from the standard curves.

The ratio of transgene copy number and reference gene copy number multiplied by 100 gives the % GM contents of the samples.
3.2.3 Real-time PCR set-up

1. Thaw, mix gently and centrifuge the required amount of components needed for the run. Keep thawed reagents at 1 - 4°C on ice.

2. In two reaction tubes (one for the MON 15895 system and one for the acp1 system) on ice, add the following components (Table 1 and 2) in the order mentioned below (except DNA) to prepare the master mixes.

Table 1. Amplification reaction mixture in the final volume/concentration per reaction well for the MON 15985 specific system.

<table>
<thead>
<tr>
<th>Component</th>
<th>Final concentration</th>
<th>µL/reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaqMan® Universal PCR Master Mix (2x)</td>
<td>1x</td>
<td>25</td>
</tr>
<tr>
<td>MON 15985 primer forward (10 µM)</td>
<td>150 nM</td>
<td>0.75</td>
</tr>
<tr>
<td>MON 15985 primer reverse (10 µM)</td>
<td>150 nM</td>
<td>0.75</td>
</tr>
<tr>
<td>MON 15985 probe (5 µM)</td>
<td>50 nM</td>
<td>0.50</td>
</tr>
<tr>
<td>Nuclease free water</td>
<td>#</td>
<td>19</td>
</tr>
<tr>
<td>Template DNA (max 200 ng)</td>
<td>#</td>
<td>4.0</td>
</tr>
<tr>
<td>Total reaction volume:</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

Table 2. Amplification reaction mixture in the final volume/concentration per reaction well for the cotton acp1 reference system.

<table>
<thead>
<tr>
<th>Component</th>
<th>Final concentration</th>
<th>µL/reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaqMan® Universal PCR Master Mix (2x)</td>
<td>1x</td>
<td>25</td>
</tr>
<tr>
<td>acp1 primer forward (10 µM)</td>
<td>150 nM</td>
<td>0.75</td>
</tr>
<tr>
<td>acp1 primer reverse (10 µM)</td>
<td>150 nM</td>
<td>0.75</td>
</tr>
<tr>
<td>acp1 probe (5 µM)</td>
<td>50 nM</td>
<td>0.50</td>
</tr>
<tr>
<td>Nuclease free water</td>
<td>#</td>
<td>19</td>
</tr>
<tr>
<td>Template DNA (max 200 ng)</td>
<td>#</td>
<td>4.0</td>
</tr>
<tr>
<td>Total reaction volume:</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

3. Mix gently and centrifuge briefly.

4. Prepare two reaction tubes (one for the cotton MON 15985 and one for the acp1 reaction mixes) for each DNA sample to be tested (standard curve samples, unknown samples and control samples).

5. Add to each reaction tube the correct amount of reaction mix (e.g. 46 x 3 = 138 µL reaction mix for three PCR repetitions). Add to each tube the correct amount of DNA (e.g. 4 x 3 = 12 µL DNA for three PCR repetitions). Vortex each tube for approx. 10 sec. This step is mandatory to reduce the variability among the repetitions of each sample to a minimum.
6. Spin down the tubes in a micro-centrifuge. Aliquot 50 µL in each well. Seal the reaction plate with optical cover or optical caps. Centrifuge the plate at low speed (e.g. approximately 250 x g for 1 minute at 4 °C to room temperature) to spin down the reaction mixture.

7. Place the plate into the instrument.

8. Run the PCR with cycling conditions described in Table 3.

Table 3. Cycling program for MON 15985 specific system and for the cotton acp1 reference system

<table>
<thead>
<tr>
<th>Step</th>
<th>Stage</th>
<th>T°C</th>
<th>Time (sec)</th>
<th>Acquisition</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UNG</td>
<td>50 °C</td>
<td>120</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Initial denaturation</td>
<td>95 °C</td>
<td>600</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Amplification</td>
<td></td>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Denaturation</td>
<td>95 °C</td>
<td>15</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annealing & Extension</td>
<td>60 °C</td>
<td>60</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

3.3 Data analysis

After the real-time PCR, analyse the run following the procedure below:

a) Set the threshold: display the amplification curves of one system (e.g. MON 15985) in logarithmic mode. Locate the threshold line in the area where the amplification profiles are parallel (exponential phase of PCR) and where there is no “fork effect” between repetitions of the same sample. Press the “update” button to ensure changes affect Ct values. Switch to the linear view mode by clicking on the Y axis of the amplification plot, and check that the threshold previously set falls within the geometric phase of the curves.

b) Set the baseline: determine the cycle number at which the threshold line crosses the first amplification curve and set the baseline three cycles before that value (e.g. earliest Ct = 25, set the baseline crossing at Ct = 25 – 3 = 22).

c) Save the settings.

d) Repeat the procedure described in a) and b) on the amplification plots of the other system (e.g. acp1 system).

e) Save the settings and export all the data to a text file for further calculations.
3.4 Calculation of results

After having defined a threshold value within the logarithmic phase of amplification as described above, the instrument’s software calculates the Ct-values for each reaction.

The standard curves are generated both for the acp1 and the MON 15985 specific systems by plotting the Ct values measured for the calibration points against the logarithm of the DNA copy numbers and by fitting a linear regression line into these data.

Thereafter, the standard curves are used to estimate the copy numbers in the unknown sample DNA.

For the determination of the amount of event MON 15985 DNA in the unknown sample, the MON 15985 copy number is divided by the copy number of the cotton reference gene (acp1) and multiplied by 100 to obtain the percentage value (GM% = MON15985/acp1 x 100).

4. Materials

4.1 Equipment

- Real-time PCR instrument for plastic reaction vessels (glass capillaries are not recommended for the described buffer composition)
- Plastic reaction vessels suitable for real-time PCR instrument (enabling undisturbed fluorescence detection)
- Software for run analysis (mostly integrated in the software of the real-time PCR instrument)
- Microcentrifuge
- Micropipettes
- Vortex
- Rack for reaction tubes
- 1.5/2.0 ml reaction tubes

4.2 Reagents

- TaqMan® Universal PCR Master Mix (2X). Applied Biosystems Part No 4304437
4.3 Primers and Probes

<table>
<thead>
<tr>
<th>Name</th>
<th>Oligonucleotide DNA Sequence (5’ to 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON 15985 target sequence</td>
<td>5’ – GTT ACT AGA TCG GGG ATA TCC – 3’</td>
</tr>
<tr>
<td>MON 15985 forward primer</td>
<td>5’ – AAG GTT GCT AAA TGG ATG GGA – 3’</td>
</tr>
<tr>
<td>MON 15985 reverse primer</td>
<td>6-FAM 5’– CCG CTC TAG AAC TAG TGG ATC TGC ACT GAA– 3’ TAMRA</td>
</tr>
<tr>
<td>Reference gene acp1 target sequence</td>
<td>5’ – ATT GTG ATG GGA CTT GAG GAA GA – 3’</td>
</tr>
<tr>
<td>acp1 forward primer</td>
<td>5’ – CTT GAA CAG TTG TGA TGG ATT GTG – 3’</td>
</tr>
<tr>
<td>acp1 reverse primer</td>
<td>6-FAM 5’– ATT GTC TTC CAC CGT GTA TCC GAA – 3’ TAMRA</td>
</tr>
</tbody>
</table>

5. References