Seeds Sampling and DNA Extraction of Oilseed Rape

Report on the Validation of an Oilseed Rape DNA Extraction Method from Seeds

07 February 2007
Corrected version 1 - 25 July 2017

JOINT RESEARCH CENTRE
Health, Consumers and Reference Materials
Food & Feed Compliance

Method development and single laboratory validation:
Monsanto Company

Method testing and confirmation:
Community Reference Laboratory for GM Food and Feed (CRL-GMFF)
Biotechnology & GMOs Unit
Modification from the previous version:
At page 6:

5. PEG Precipitation Buffer (20% w/v) (store at room temperature)
 Changed to

5. PEG Precipitation Buffer (20% w/v) (store at room temperature)
 - 20% w/v PEG (MW 8000)
 - 2.5 M NaCl

At Page 6: added the storage conditions of the solutions

Note:
Since 01/12/2009 the term "Community Reference Laboratory (CRL)" is changed into "European Union Reference Laboratory (EURL)".

From 01/03/2009 until 31/06/2016 the JRC-unit that hosts the EURL GMFF is named "Unit for Molecular Biology and Genomics" instead of "Biotechnology and GMO Unit".

Since 01/07/2016 the JRC-unit that hosts the EURL GMFF is named "Food and feed compliance"
Quality assurance

The EURL GMFF is ISO 17025:2005 accredited [certificate number: Belac 268 TEST (Flexible Scope for DNA extraction, DNA identification and real Time PCR) and ISO 17043:2010 accredited (certificate number: Belac 268 PT, proficiency test provider). The original version of the document containing evidence of internal checks and authorisation for publication is archived within the EURL GMFF quality system.

Address of contact laboratory:
European Commission
Directorate General Joint Research Centre
Directorate F – Health, Consumers and Reference Materials
European Union Reference Laboratory for GM Food and Feed
Food & Feed Compliance (F.5)
Via E. Fermi, 2749. TP201
I-21027 Ispra (VA), Italy

Functional mailbox: JRC-EURL-GMFF@ec.europa.eu
Contents

1 Introduction ..5
2 Materials (Equipment/Chemicals/Plasticware) ..5
 2.1. Equipment ...5
 2.2. Chemicals ..5
 2.3. Solutions ...6
 2.4. Plasticware ...6
3 Description of the methods ...6
 3.1 Sampling ..6
 3.2 Scope and applicability ..6
 3.3 Principle ...7
 3.4 Oilseed rape seed DNA extraction protocol ...7
4 Testing of the DNA extraction method by the Community Reference Laboratory for GM Food and Feed ...8
 4.1 Preparation of samples ..9
 4.2 DNA extraction ..9
 4.3 DNA concentration, yield and repeatability ..9
 4.4 Fragmentation state of DNA ..10
 4.5 Purity / Absence of PCR inhibitors ..10
5 Conclusion ..12
6 Quality assurance ..12
7 References ...12
1 Introduction

A plant DNA extraction protocol is described here as derived from the publicly available “CTAB” method (1). The modified protocol can be used for extraction of DNA from leaves, seeds and grains of soybean ground to powder using a mortar and pestle.

These protocols are recommended to be executed by skilled laboratory personal as the procedures comprise working with hazardous chemicals and materials. It is strongly advised to take particular notice of all product safety recommendations and guidelines.

2 Materials (Equipment/Chemicals/Plasticware)

2.1. Equipment

The following equipment is used in the DNA extraction procedure described (equivalents may be used):

1. Centrifuge (Beckman Coulter Avanti J-251)
2. Shaker (LabLine Enviro 3527)
3. Thermometer (VWR Cat. No. 61222-504)
4. Vacufuge (Eppendorf 5301 22 82 010-9)
5. Water bath (Precision Cat. No. 51220046)
6. Micro-centrifuge (Any appropriate model)

2.2. Chemicals

The following reagents are used in the DNA extraction procedure described (equivalents may be used):

1. 24:1 chloroform:isoamyl alcohol (Sigma Cat. No. C-0549)
2. 25:24:1 phenol:chloroform:isoamyl alcohol (Sigma Cat. No. P-3803)
3. Ammonium acetate 7.5 M (Sigma Cat. No. A-2706)
4. CTAB (Sigma Cat. No. H-6269)
5. 0.5 M EDTA, pH 8.0 (GibcoBRL Cat. no. 15575-038)
6. 100% ethanol (AAPER)
7. NaCl (Sigma Cat. No. S-5150)
8. 2-mercaptoethanol (Bio-Rad Cat. no. 161-0710)
9. RNase A (Roche Cat. No. 10 109 196 001)
10. Isopropanol (EM Science Cat. No. PX1835-9)
11. 1 M Tris HCl pH 8.0 (Sigma Cat. No. T-3038)
12. Proteinase K (Roche Cat. No. 03 115 836 001)
13. Polyethylene Glycol (MW 8000) (Sigma Cat. No. P2139)
2.3. Solutions

The following buffers and solutions are used in the DNA extraction procedure described:

1. **CTAB Extraction Buffer (2%) (store at room temperature)**
 - 2% w/v CTAB
 - 100 mM Tris HCl pH 8.0
 - 20 mM EDTA pH 8.0
 - 1.4 M NaCl

2. **Tris-EDTA buffer (TE 1X) (store at room temperature)**
 - 10 mM Tris HCl pH 8.0
 - 1 mM EDTA pH 8.0

3. **Proteinase K (10 mg/mL) (store at -20 °C)**

4. **RNase A (10 mg/mL) (store at -20 °C)**

5. **PEG Precipitation Buffer (20% w/v) (store at room temperature)**
 - 20% w/v PEG (MW 8000)
 - 2.5 M NaCl

6. **Ethanol (70% v/v) (store at room temperature)**

7. **Ethanol (80% v/v) (store at room temperature)**

2.4. Plasticware

- 50 mL conical tubes (Corning Cat. No. 430290)
- 13 mL Sarstedt tubes (Sarstedt Cat. No. 60.540)
- 1.5 mL microcentrifuge tubes
- filter tips

Note: All plasticware has to be sterile and free of DNases, RNases and nucleic acids.

3 Description of the methods

3.1 Sampling

For sampling methods, it is referred to the technical guidance documents and protocols described in Commission Recommendation 2004/787/EC on technical guidance for sampling and detection of genetically modified organisms and material produced from genetically modified organisms as or in products in the context of Regulation (EC) N. 1830/2003.

3.2 Scope and applicability

The “Oilseed rape seed DNA extraction protocol” method for DNA extraction described below is suitable for the isolation of genomic DNA from a wide variety of oilseed rape tissues and derived matrices. However, validation data presented here are restricted to ground oilseed rape seeds.
Application of the method to other matrices may require adaptation and possible further specific validation.

3.3 Principle

The basic principle of the DNA extraction consists of first releasing the DNA present in the matrix into aqueous solution and further purifying the DNA from PCR inhibitors. The “Oilseed rape seed DNA extraction protocol” method starts with a lysis step (thermal lysis in the presence of Tris HCl, EDTA, CTAB and β-mercaptoethanol) followed by removal of contaminants such as lipophilic molecules and proteins by extraction with phenol and chloroform.

A DNA precipitate is then generated by using isopropanol. The pellet is dissolved in TE-buffer. Remaining inhibitors are removed by PEG precipitation and re-suspension in TE-buffer.

Tissues crushing procedure

Tissues should be processed prior to extraction procedure. Possible methods of processing include a mortar and pestle with liquid nitrogen (leaf) or commercial blender (grain or seed).

3.4 Oilseed rape seed DNA extraction protocol

1. Weight out 5-6 g of processed tissue into a 50 mL conical tube appropriate for centrifugation.
 Note: For unprocessed tissue, weighing may occur prior to processing as long as entire processed sample is transferred to the conical tube.
2. For each 5-6 g sample add 25 mL of a solution consisting of 24.25 mL pre-warmed CRAB extraction buffer, 0.5 mL 2-mercaptoethanol (2-ME), and 0.25 mL of 10 mg/mL proteinase K for a final concentration of 2% (2-ME) and 100 µg/mL (proteinase K).
3. Incubate the tube for 60 minutes at 55 °C. Cool the tube briefly on bench (10 minutes)
5. Centrifuge for 10 minutes at 13000 x g and 20-25 °C to separate the aqueous and organic phases. Transfer upper aqueous phase to a clean 50 mL conical tube.
6. Repeat extraction two times for a total of three extractions (step 4-5).
7. Transfer upper aqueous phase to a new tube and add approximately 2/3 volume of -20 °C isopropanol and gently invert the tube several times to mix.
8. To precipitate the DNA place the tube at -20 °C for 30 minutes. DNA may be stored as an isopropanol precipitate ad -20 °C for up to 1 year.
9. To pellet the DNA centrifuge the tubes at approximately 13000 x g for 20 minutes at 4 °C.
10. Re-dissolve the pellet in 4 mL of TE pH 8.0. Transfer to a 13-mL Sarstedt tube and add approximately 40 µL of 10 mg/mL RNase, then incubate at 37 °C for 30 minutes.
11. To extract the DNA add 4 mL of chloroform:isoamyl alcohol (CIA, 24:1). Centrifuge for 10 minutes at approximately 13000 x g at room temperature. Transfer the upper aqueous phase to a clean Sarstedt tube.
12. Repeat step 11 twice, then add half volume of 7.5 M ammonium acetate, gently mix by inversion/pipetting and add 2 volumes of 100% ethanol. Mix by inversion/pipetting and place at -20 °C for 30 minutes. DNA may be stored as ethanol precipitate at -20 °C for up to 1 year.
13. Centrifuge at 13000 x g for 20 minutes at 4 °C to pellet the DNA.
14. Rinse the DNA pellet twice with 70 % ethanol and remove residual ethanol by vacuum.
15. Re-suspend DNA in 1 mL TE, pH 8.0 and incubate at 65 °C for 1 hour with periodic gentle mixing.
16. Centrifuge the DNA solution at 16000 x g for 10 minutes at 4 °C. Transfer the aqueous portion to a clean tube without disturbing the pellet and store at 4 °C.
17. Add equal volume of 20% PEG precipitation buffer to the extracted DNA solution. Mix well by pipetting or inversion.
18. Incubate the PEG/DNA mixture for 15 minutes at 37 °C.
19. Centrifuge the PEG/DNA mixture for 15 minutes at approximately 15000 x g at room temperature.
20. Pour off supernatant or remove by pipetting. Wash the walls of the tube and DNA pellet with 80% ethanol (1.25 times volume of the original PEG/DNA mixture). Pour off ethanol or remove by pipetting.
21. Repeat wash once for a total of two washes (step 20).
22. Completely dry any residual ethanol by vacufuge at low heat (4-6 minutes).
23. Re-suspend the pellet in TE or H2O using approximately equal volume as original DNA solution.
24. Centrifuge the re-suspended DNA solution at 15000 x g for 15 minutes.
25. Transfer DNA solution to a clean tube without disturbing the pellet.

Abbreviations:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>RNase A</td>
<td>ribonuclease A</td>
</tr>
<tr>
<td>TE</td>
<td>tris EDTA</td>
</tr>
<tr>
<td>Tris</td>
<td>tris(hydroxymethyl)aminomethane</td>
</tr>
</tbody>
</table>

4 Testing of the DNA extraction method by the Community Reference Laboratory for GM Food and Feed

The aim of the experimental testing was to verify that the method of DNA extraction provides DNA of suitable quantity and quality for the intended purpose.

The DNA extraction method should allow preparation of the analyte in quality and quantity appropriate for the analytical method used to quantify the event-specific analyte versus the reference analyte.

The CRL-GMFF tested the “Recommended Procedure for DNA Extraction from Plant Tissues” proposed by the applicant on samples of food and feed consisting of ground oilseed rape seeds provided by the applicant.

To assess the suitability of the extraction method for real-time PCR analysis, the extracted DNA was tested using a qualitative PCR run on the real-time PCR equipment.
4.1 Preparation of samples

About 200 g of oilseed rape seed material were ground using a GRINDOMIX GM 200 (Retsch GmbH) mixer.

4.2 DNA extraction

DNA was extracted following the “Recommended Procedure for DNA Extraction from Plant Tissues” described above and in-house validated by the applicant.

The DNA extraction was carried out on 6 test portions (replicates) and repeated over three different days, giving a total of 18 DNA extracts.

4.3 DNA concentration, yield and repeatability

DNA concentration of the DNA extracted was determined by fluorescence detection using the PicoGreen dsDNA Quantitation Kit (Molecular Probes).

Each DNA extract was measured twice, and the two values were averaged. DNA concentration was determined on the basis of a five point standard curve ranging from 1 to 500 ng/µL using a Biorad VersaFluor fluorometer.

The DNA concentration for all samples is reported in the Table 1 below:

Table 1. DNA concentration (ng/µL) of eighteen samples extracted in three days: yellow boxes for samples extracted on day 1, green boxes for samples extracted on day 2 and blue boxes for samples extracted on day 3.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Concentration (ng/µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>231</td>
</tr>
<tr>
<td>2</td>
<td>228</td>
</tr>
<tr>
<td>3</td>
<td>251</td>
</tr>
<tr>
<td>4</td>
<td>249</td>
</tr>
<tr>
<td>5</td>
<td>269</td>
</tr>
<tr>
<td>6</td>
<td>285</td>
</tr>
<tr>
<td>1</td>
<td>262</td>
</tr>
<tr>
<td>2</td>
<td>297</td>
</tr>
<tr>
<td>3</td>
<td>215</td>
</tr>
<tr>
<td>4</td>
<td>241</td>
</tr>
<tr>
<td>5</td>
<td>290</td>
</tr>
<tr>
<td>6</td>
<td>338</td>
</tr>
<tr>
<td>1</td>
<td>406</td>
</tr>
<tr>
<td>2</td>
<td>361</td>
</tr>
<tr>
<td>3</td>
<td>402</td>
</tr>
<tr>
<td>4</td>
<td>379</td>
</tr>
<tr>
<td>5</td>
<td>380</td>
</tr>
<tr>
<td>6</td>
<td>350</td>
</tr>
</tbody>
</table>
According the data reported in Table 1, the following figures are calculated:

DNA concentration (ng/µL)

<table>
<thead>
<tr>
<th>Overall average of all samples:</th>
<th>302 ng/µL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard deviation of all samples</td>
<td>64.3 ng/µL</td>
</tr>
<tr>
<td>Coefficient of variation</td>
<td>21.3 %</td>
</tr>
</tbody>
</table>

Yield (total volume of DNA solution: 1000 µL)

<table>
<thead>
<tr>
<th>Overall average of all samples:</th>
<th>302 µg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard deviation</td>
<td>64.3 µg</td>
</tr>
<tr>
<td>Coefficient of variation</td>
<td>21.3 %</td>
</tr>
</tbody>
</table>

4.4 Fragmentation state of DNA

The size of the extracted DNA was evaluated by agarose gel electrophoresis; 8 µL of the DNA solution were analysed on a 1.0% agarose gel (Figure 1).

Figure 1. Agarose gel electrophoresis of genomic DNA samples extracted from oilseed rape seeds. Lanes 2-7: samples extracted on day 1; lanes 8-13 samples extracted on day 2; lanes 14-19 samples extracted on day 3; lanes 1 and 20: Lambda DNA/EcoRI+HindIII Marker.

The 18 genomic DNA samples extracted as described above appeared as distinct fluorescent banding patterns migrating through the gel corresponding to high molecular weight DNA. None of the DNA samples showed indications of significant degradation ("smearing").

4.5 Purity / Absence of PCR inhibitors

In order to assess the purity and confirm the absence of PCR inhibitors, the extracted DNA solutions were adjusted to a concentration of 40 ng/µL (hereafter referred as “undiluted” samples). Subsequently fourfold serial dilutions of each extract were prepared with 0.2x TE buffer (1:4, 1:16, 1:64, 1:256) and analysed using a real-time PCR system detecting the target sequence of the oilseed rape endogenous gene CruA (*Cruciferin A*). The Ct values obtained for “undiluted” and diluted DNA samples are reported in the Table 2 below:
Table 2. Ct values of undiluted and fourfold serially diluted DNA extracts after amplification of rapeseed Cruciferine gene, cruA

<table>
<thead>
<tr>
<th>DNA extract</th>
<th>Undiluted (40 ng/µL)</th>
<th>1:4</th>
<th>1:16</th>
<th>1:64</th>
<th>1:256</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.50</td>
<td>23.06</td>
<td>25.26</td>
<td>27.27</td>
<td>29.43</td>
</tr>
<tr>
<td>2</td>
<td>21.26</td>
<td>23.24</td>
<td>24.97</td>
<td>26.87</td>
<td>29.38</td>
</tr>
<tr>
<td>3</td>
<td>21.32</td>
<td>23.02</td>
<td>24.99</td>
<td>27.09</td>
<td>29.20</td>
</tr>
<tr>
<td>4</td>
<td>21.38</td>
<td>23.09</td>
<td>24.97</td>
<td>27.04</td>
<td>29.21</td>
</tr>
<tr>
<td>5</td>
<td>21.42</td>
<td>23.14</td>
<td>24.90</td>
<td>27.06</td>
<td>29.10</td>
</tr>
<tr>
<td>6</td>
<td>21.28</td>
<td>23.05</td>
<td>24.95</td>
<td>27.16</td>
<td>29.40</td>
</tr>
</tbody>
</table>

Table below summarises the comparison of extrapolated Ct values versus measured Ct values for all samples, as well as reporting the values of linearity (R^2) and slope of all measurements.

Table 3. Comparison of extrapolated Ct values versus measured Ct values (amplification of rapeseed Cruciferine gene, cruA)

<table>
<thead>
<tr>
<th>DNA extraction</th>
<th>R^2</th>
<th>Slope*</th>
<th>Ct extrapolated</th>
<th>mean Ct measured</th>
<th>ΔCt**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.997</td>
<td>-3.51</td>
<td>20.97</td>
<td>21.50</td>
<td>0.53</td>
</tr>
<tr>
<td>2</td>
<td>0.991</td>
<td>-3.38</td>
<td>21.03</td>
<td>21.26</td>
<td>0.23</td>
</tr>
<tr>
<td>3</td>
<td>0.999</td>
<td>-3.43</td>
<td>20.91</td>
<td>21.32</td>
<td>0.41</td>
</tr>
<tr>
<td>4</td>
<td>0.997</td>
<td>-3.40</td>
<td>20.97</td>
<td>21.38</td>
<td>0.41</td>
</tr>
<tr>
<td>5</td>
<td>0.997</td>
<td>-3.33</td>
<td>21.04</td>
<td>21.42</td>
<td>0.38</td>
</tr>
<tr>
<td>6</td>
<td>0.998</td>
<td>-3.53</td>
<td>20.83</td>
<td>21.28</td>
<td>0.45</td>
</tr>
<tr>
<td>1</td>
<td>0.996</td>
<td>-3.18</td>
<td>21.22</td>
<td>21.23</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>0.998</td>
<td>-3.22</td>
<td>21.10</td>
<td>21.49</td>
<td>0.39</td>
</tr>
<tr>
<td>3</td>
<td>0.996</td>
<td>-3.35</td>
<td>21.10</td>
<td>21.17</td>
<td>0.07</td>
</tr>
<tr>
<td>4</td>
<td>0.990</td>
<td>-3.48</td>
<td>21.00</td>
<td>21.25</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>0.997</td>
<td>-3.43</td>
<td>20.97</td>
<td>21.37</td>
<td>0.40</td>
</tr>
<tr>
<td>6</td>
<td>0.990</td>
<td>-3.33</td>
<td>21.06</td>
<td>21.25</td>
<td>0.20</td>
</tr>
<tr>
<td>1</td>
<td>0.995</td>
<td>-3.74</td>
<td>20.39</td>
<td>21.19</td>
<td>0.80</td>
</tr>
<tr>
<td>2</td>
<td>0.994</td>
<td>-3.58</td>
<td>20.78</td>
<td>21.06</td>
<td>0.28</td>
</tr>
<tr>
<td>3</td>
<td>0.988</td>
<td>-3.54</td>
<td>20.71</td>
<td>21.29</td>
<td>0.57</td>
</tr>
<tr>
<td>4</td>
<td>0.996</td>
<td>-3.39</td>
<td>21.04</td>
<td>21.21</td>
<td>0.17</td>
</tr>
<tr>
<td>5</td>
<td>0.991</td>
<td>-3.43</td>
<td>20.88</td>
<td>21.23</td>
<td>0.35</td>
</tr>
<tr>
<td>6</td>
<td>0.995</td>
<td>-3.38</td>
<td>20.82</td>
<td>21.13</td>
<td>0.31</td>
</tr>
</tbody>
</table>
Note: In yellow boxes samples from 1 to 6 extracted on day 1; in green boxes samples from 1-6 extracted on day 2; in blue boxes samples from 1-6 extracted on day 3.

*The expected slope for a PCR with 100% efficiency is -3.32
**ΔCt = abs (Ct extrapolated - Ct measured)

To measure inhibition, the Ct values of the four diluted samples were plotted against the logarithm of the dilution and the Ct value for the "undiluted" sample (40 ng/µL) was extrapolated from the equation calculated by linear regression.

Subsequently the extrapolated Ct for the "undiluted" sample was compared with the measured Ct. The evaluation is carried out considering that PCR inhibitors are present if the measured Ct value for the "undiluted" sample is suppressed by > 0.5 cycles from the calculated Ct value.

All ΔCt values of extrapolated versus measured Ct are < 0.5, with three exceptions: the sample number 1 extracted on day 1, with a value of 0.53, and samples number 1 and 3 extracted on day 3 with a value of 0.80 and 0.57, respectively.

R² of linear regression is > 0.99 for all DNA samples, except one (0.988).

5 Conclusion
The data reported confirm that the extraction method provides DNA of suitable quantity and quality for subsequent PCR based detection applications. The method is therefore applicable to the samples of food and feed provided in accordance with the requirements of Annex I-2.C.2 to Commission Regulation (EC) No 641/2004.

6 Quality assurance
The CRL-GMFF carries out all its operations according to ISO 9001:2000 (certificate number: CH-32232) and ISO 17025:2005 (certificate number: DAC-PL-0459-06-00) [DNA extraction, qualitative and quantitative PCR in the area of Biology (DNA extraction and PCR method validation for the detection and identification of GMOs in food and feed materials)]

7 References