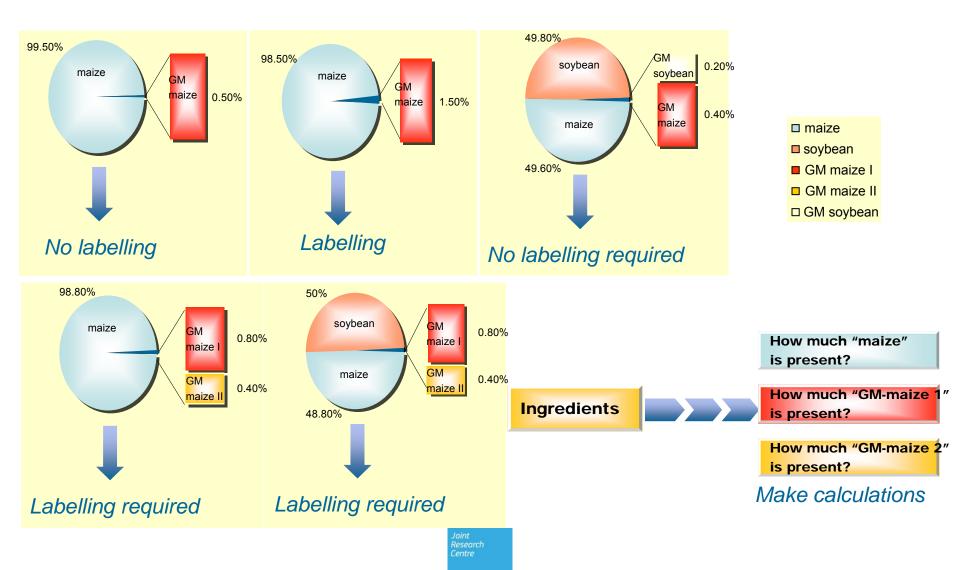
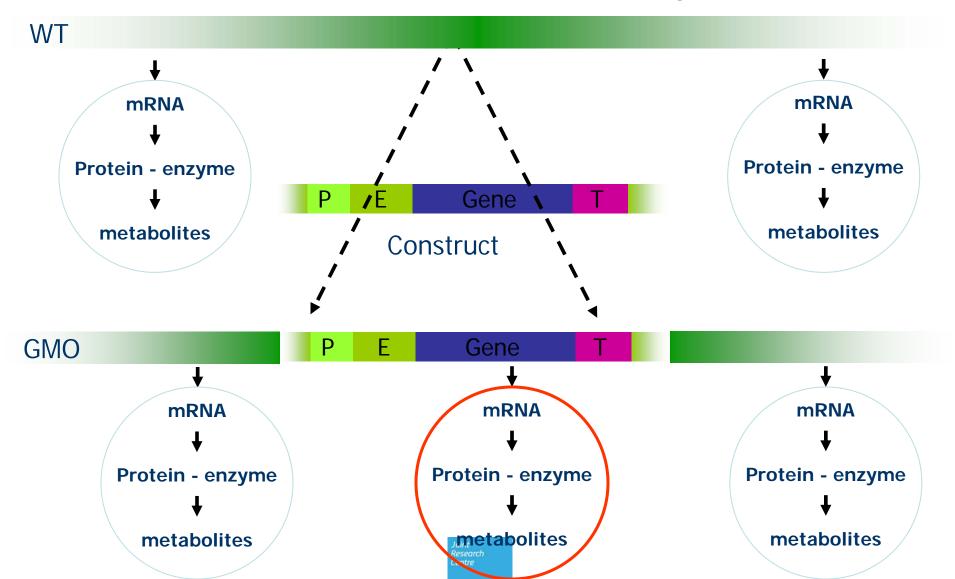

Overview on technical aspects of GMO detection approaches

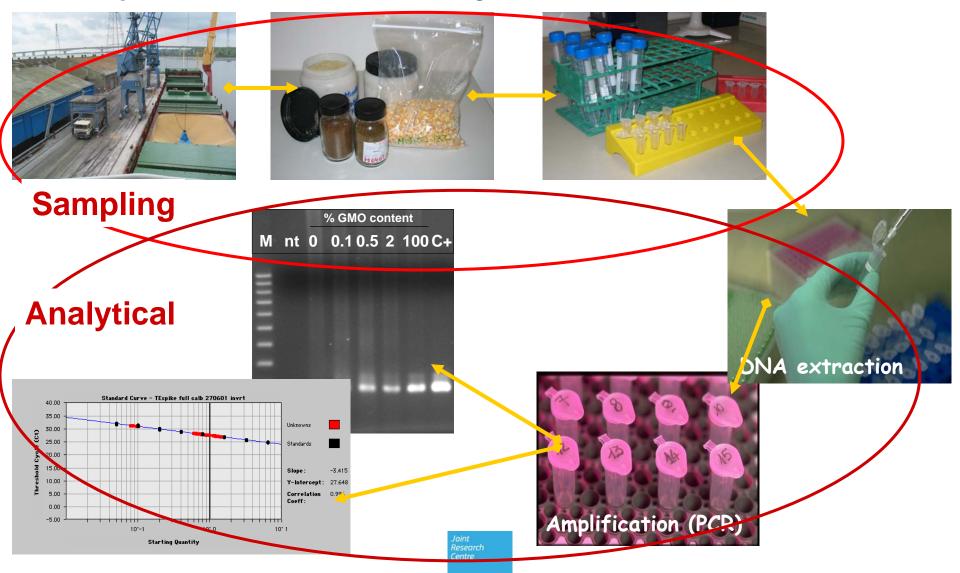
Maddalena QUERCI

Molecular Biology & Genomics Unit Institute for Health and Consumer Protection (IHCP) European Commission Joint Research Centre


Ist International Workshop on Harmonisation of GMO Detection and Analysis in MENA Region Jordan, 4-5 June 2012

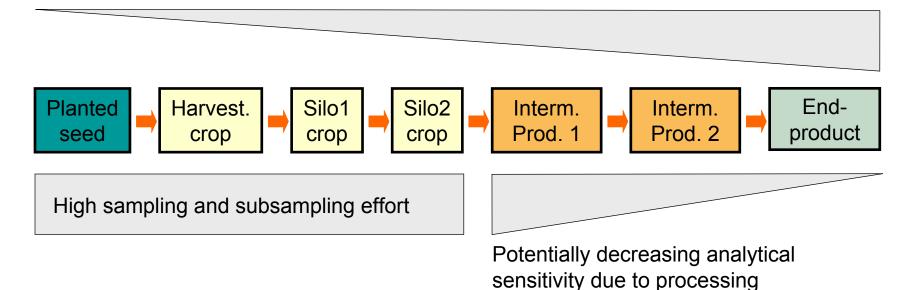


Quantification of GMOs and labelling



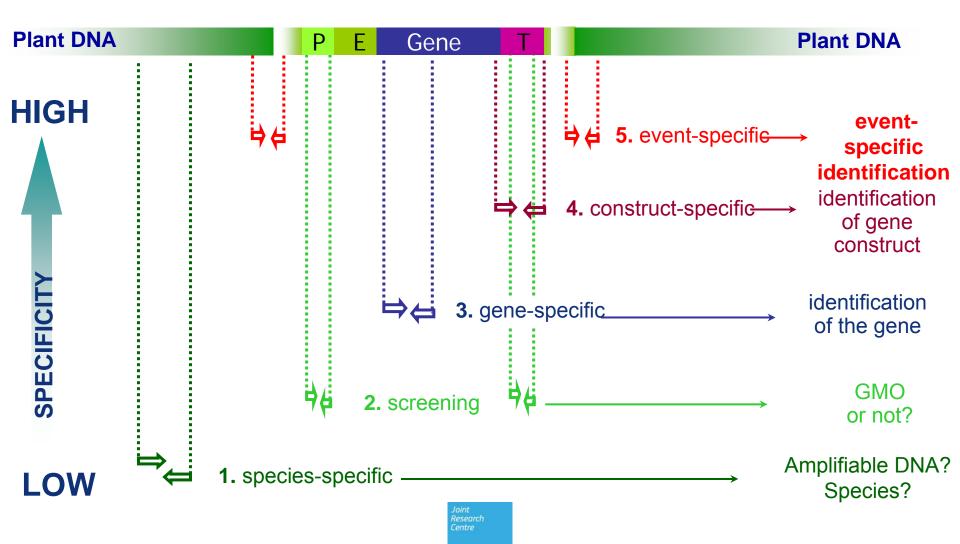
How to Know if a Product is Genetically Modified ?

Steps in DNA based GMO analysis and source of errors



Detection strategies, which method to select?

Experience along the production chain


Increasing homogeneity / representativity

Joint Research Centre

Detection strategies, which target to select?

Strategies for GMO testing

Step

Screening

Identification

Purpose

Broad screening for revealing the (eventual) presence of GMOs. The test provides information on presence/absense. It also serves the purpose of reducing the number of samples that need further testing. This step does not allow knowing which GMO is/are present.

Allows the identification of the GMO(s) present in the tested sample. Used to identify approved GMOs and to exclude nonapproved GMOs

Quantification

Allows definying how much GM material is present in the sample. Applied to check for labelling requirements

Suitable methods

Methods targeting (regulatory) elements most commonly used (Element-specific; modificationspecific methods). Today more methods need to be used/combined to have 100% coverage.

Methods allowing the unequivocal identification of the GM events. The highest specificity is obtained using "event-specific" methods = methods targeting the specific region, in the genome, in which the foreign DNA is integrated. This region is unique for each event.

Event-specific methods (EURL-GMFF validated)

Joint Research Centre

Pros and cons - DNA based methods

Genetic modifications = DNA modifications

DNA stable and inheritable

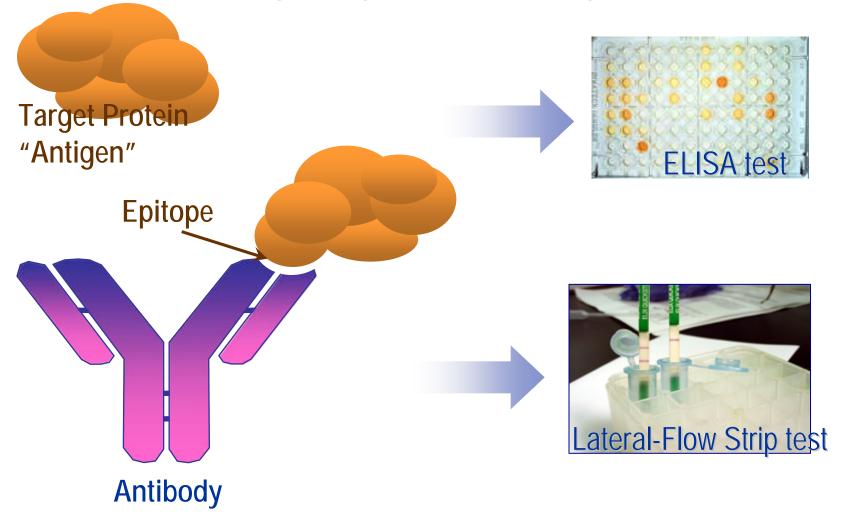
DNA traceable unit for all purposes

Matrix limitations may apply

Sensitive, fit for identification and quantification

Costs:

- Efficient screening (multiple targets and GMOs)
- Expensive identification and quantification
- Equipment, reference material, skilled staff


Limited coverage, although superior to protein

Can only detect what we have methods for!

GMO analysis by immuno assays

Joint Research Centre

Pros and cons - protein based methods

Advantages/benefits:

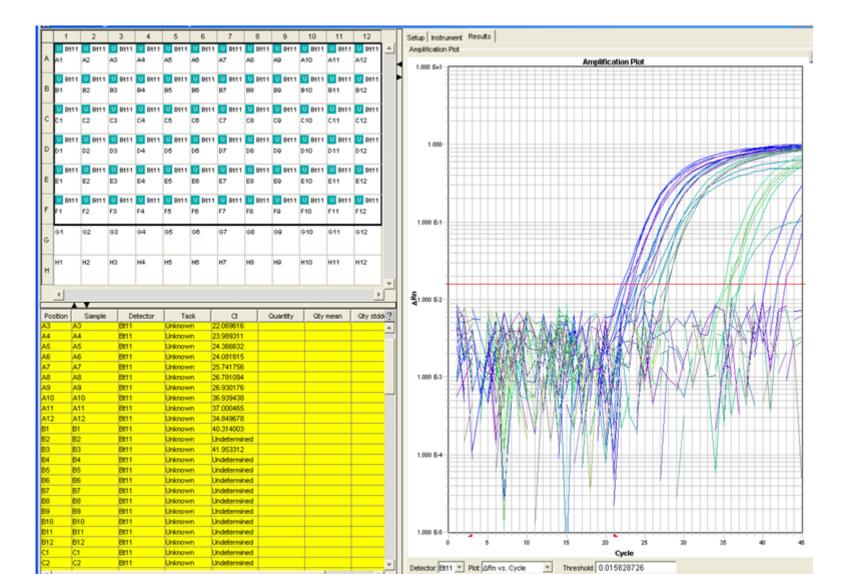
- Speed
- Cost
- Practicability and easy transferibility
- Low risk of false positives (carry over)
- Well established in the food industry

Drawbacks:

- Matrix limitations and sensitivity
- Coverage low (methods only for few GMOs)
- Low fitness for Qn analysis
- Limited identification (no event identification except for 'unique' traits)

Present context

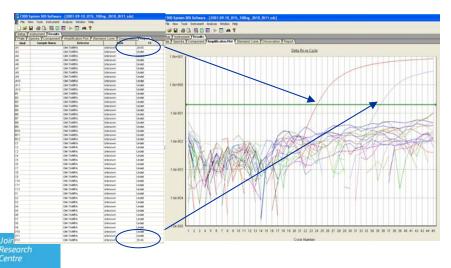
- Worldwide adoption and use of GMOs is rapidly increasing (acreage, countries);
- Constant rise in GMO complexity, number of traits and events;
- In the EU:
 - Mandatory labelling of GMOs and derived food/feed products (if above 0.9%) requires event-specific methods;
 - GMO control based on combination of screening + event-specific detection methods;
 - Increasing number of GMOs under approval;
 - Asynchronous approval process complicates the analytical procedure.


 \uparrow Higher number of methods to be applied for full product characterisation.

↑ Increased time and cost of analysis/sample.

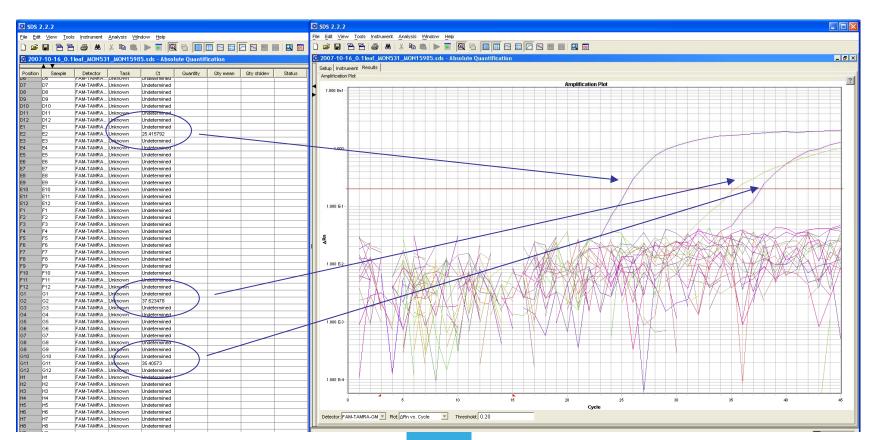
Endpoint RT-PCR for qualitative PCR detection

Real-Time PCR based readyto-use multi-target analytical system for the detection of EU authorised and unauthorised GM events


Pre-spotted plates

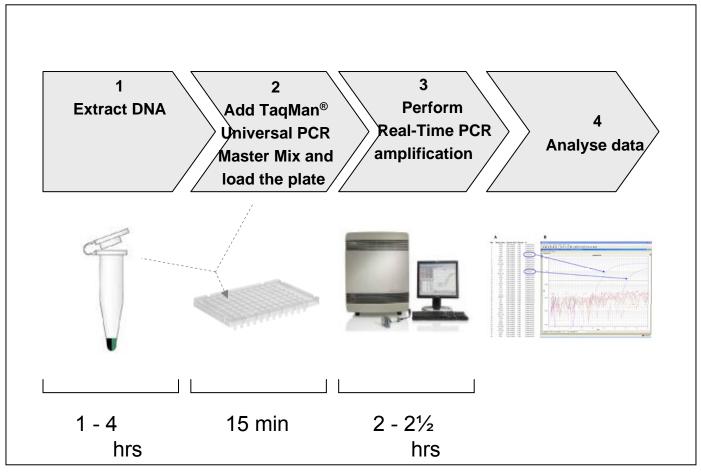
Targets:7 plant species39 GM events

	1	2	3	4	5	6	7	8	9	10	11	12
A	IMG Maize Ref	SAH7 Cotton Ref	PLD Rice Ref	CruA Oilseed Ref	Lectin Soybean Ref	GS Sugarbeet Ref	UGPase Potato Ref	t11 Maize	NK603 Maize	GA21Maize Monsanto	MON863 Maize	1507 Maize
в	T25 Maize	59122 Maize	H7-1 Sugar beet	MON810 Maize	281-24- 236 Cotton	3006-210- 23 Cotton	LLRICE62 Rice	T45 oilseed rape	EH92-527- 1 Potato	Ms8 Oilseed rape	Rf3 Oilseed rape	GT73 (RT63) Rapeseed
с	LLCotton2 5 Cotton	MON 531 Cotton	A2704-12 Soybean	MIR604 Maize	Rf1 Rapeseed	Rf2 Rapeseed	Ms1 Rapeseed	Topas 19/2 Rapeseed	MON1445 Cotton	Bt176 Maize	MON15985 Cotton	40-3-2 Soybean
D	GA21 Maize Syngenta	MON88017 maize	LYO38 Maize	3272 Maize	MON89788 soybean	MON89034 Maize	DP-356043 soybean	MON88913 cotton	Rice GM events P35S::bar	LLRice601 Rice	Bt63 Rice	Bt10 Maize
E	IMG Maize Ref	SAH7 Cotton Ref	PLD Rice Ref	CruA Oilseed Ref	Lectin Soybean Ref	GS Sugarbeet Ref	UGPase Potato Ref	t11 Maize	NK603 Maize	GA21Maize Monsanto	MON863 Maize	1507 Maize
F	T25 Maize	59122 Maize	H7-1 Sugar beet	MON810 Maize	281-24- 236 Cotton	3006-210- 23 Cotton	LLRICE62 Rice	T45 oilseed rape	EH92-527- 1 Potato	Ms8 Oilseed rape	Rf3 Oilseed rape	GT73 (RT63) Rapeseed
G	LLCotton2 5 Cotton	MON 531 Cotton	A2704-12 Soybean	MIR604 Maize	Rf1 Rapeseed	Rf2 Rapeseed	Ms1 Rapeseed	Topas 19/2 Rapeseed	MON1445 Cotton	Bt176 Maize	MON15985 Cotton	40-3-2 Soybean
н	GA21 Maize Syngenta	MON88017 maize	LYO38 Maize	3272 Maize	MON89788 soybean	MON89034 Maize	DP-356043 soybean	MON88913 cotton	Rice GM events P35S::bar	LLRice601 Rice	Bt63 Rice	Bt10 Maize


Sample 2

Detection of cotton event MON15985

E2 = SAH7 cotton reference gene method G2 = MON531 event-specific method G11 = MON15985 event-specific method


Detection of maize event Bt-10

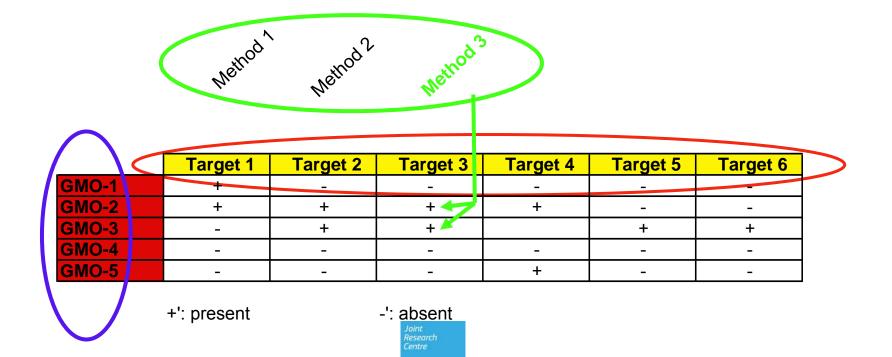
A1 = maize reference gene method D12 = Bt-10 event-specific method

Workflow and approximate timing for GMO analysis using the ready-to-use multi-target analytical system

Some commercial GM corn events and detectability by P35S and t-nos screening tests

	P35S	T-nos
Bt11	Y	Y
MON810	Y	NO
T25	Y	NO
Bt176	Y	NO
NK603	Y	Υ
GA21	NO	Υ
MON863	Y	Υ
CBH351	Y	Υ
TC1507	Y	NO

GTS 40-3-2 soybean and Mon809 maize


	CTP2	CP4	epsps	3'nos
CaMV P-35S	0112	014	opopo	01100
FMV P-35S	CTP2	CP	-epsps	rbcSE9
GT73 canola	0112	UL		100020
FMV P-35S	CTP2	goxv2	47	rbcSE9
				150020
Ms1, Ms8, Rf1, PSsuAra	RIZ and RIS	bar		CTP
			C shish and	
pTa29 PSP	anola and Riv	/I3-3, RM3-4 and RM3 barna:		3'nos
Rf1, Rf2 and Rf	3 canola			
pTa29 ASP		barsta	r	3'nos
Bt11 maize		20		
CaMV P-35S	IVS2	pat		3'nos
Bt11 maize				
CaMV P-35S	IVS6	crylA	(b)	3'nos
88		28		
T25 maize and				
T25 maize and CaMV P-35S		la pat		CaMV T-3
			-	CaMV T-3
CaMV P-35S			IV	CaMV T-3 /S9 CaMV T-3
CaMV P-35S Bt176 maize P-PEPC		pat	IV	
CaMV P-35S Bt176 maize P-PEPC Bt176 maize		pat crylA(b)		/S9 CaMV T-3
CaMV P-35S Bt176 maize P-PEPC		pat		
CaMV P-35S Bt176 maize P-PEPC Bt176 maize		pat crylA(b)		/S9 CaMV T-3
CaMV P-35S Bt176 maize P-PEPC Bt176 maize P-CDPK		pat crylA(b)		/S9 CaMV T-3
CaMV P-35S Bt176 maize P-PEPC Bt176 maize P-CDPK	HCN92 canc	pat crylA(b) crylA(b)		VS9 CaMV T-3 S9 CaMV T-3

GM commercial events

Matrix approach

The matrix is a simple table including the relationships between the targets and the methods within a screening set up

Matrix approach

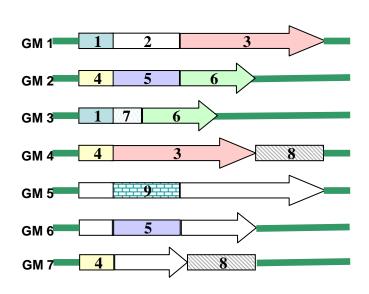
DATA

•GMO lines

•Species (knowledge on sample characteristic)

•Assays (methods): screening, construct specific, event specific

CHARACTERISTIS


•Flexible

- New GMOs can be added
- New assays can be added
- New species can be added

Matrix approach: Combination of screening methods targeting common GM elements

	RESULTS (1 method = 1 element)								GM	Interpretation	
Sample	METHOD n.								Givi	interpretation	
Campie	1	2	3	4	5	6	7	в 9			
Sample 1	+	+	+	-	-	-	I		+	GM 1	
Sample 2	-	-	-	+	+	+	I		+	GM 2	
Sample 3	+	-	-	-	-	+	+		+	GM 3	
Sample 4	-	-	+	+	-	-	I	+	+	GM 4	
Sample 5	-	-	-	-	-	-	I	• •	+	GM 5	
Sample 6	+	-	-	-	-	+	+	•	+	GM 3 + GM 5	
Sample 7	-	-	-	-	+	-	I		+	GM 6	
Sample 8	-	-	-	-	+	-	I	•	+	GM 5 + GM 6	
Sample 9	-	-	-	-	-	-		•	-	NO GM	
Sample 10	+	+	+	-	+	-	I	•	+	GM 1 + GM 5 + GM 6	
Sample 11	+	+	+	-	+	-	I	•	+	GM 1 + GM 6 + ?	

Joint Research Centre

Matrix approach

-Matrix approach dev by Waiblinger et al allows more than 90 % of analyses as screening PCRs

- -P35S and T-nos mostly used PCRs
 - P35S: to date at least 46 events
 - T-nos: to date at least 35 events

Screening for further target sequences useful:

 \rightarrow GM plants without P35S or T-nos

 \rightarrow additional information before identification of the event

Matrix approach - Screening use in daily work

- screening for
 P35S, T-nos, bar, CTP2-EPSPS, P35S-pat,
 detects all events e.g. listed in AGBIOS database
- (one exception: LY038)
- → a maximum of five real-time PCRs are necessary (less, if multiplex PCR is performed)

screening for five or more elements reduces number of possible events that have to be considered for further identification

Targets and official methods for screening

5 targets selected for screening

Sequence for screening	official real-time PCR method available? (interlaboratory tested)
P35S	yes (duplex)
T-nos	yes (duplex)
bar	yes
CTP2-CP4EPSPS	yes
P35S-pat	yes

Waiblinger et al.(2008) Dtsch Lebensm Rundsch 104(6):261–264

Combination of screening methods targeting common GM elements

X _{Prime}	PCR Test	Core element class	Primer Reference
3	RBCI	Plant	Debode (pers. Comm.), 2004
5	Lectin	Species (soya)	Terry and Harris, 2002
7	Alcohol dehydrogenase	Species (maize)	SBB/ISP
11	Cruciferine	Species (Oilseedrape)	SBB/ISP
13	CaMV p35S	Generic (promotor)	SBB/ISP
17	Agrobacterium T-NOS	Generic (terminator)	SBB/ISP
19	CP4EPSPS	Trait (herbicide res.)	SBB/ISP
23	CryIAb	Trait (insect res.)	SBB/ISP
29	PAT/pat	Trait (herbicide res.)	SBB/ISP
31	PAT/bar	Trait (herbicide res.)	SBB/ISP

GMO	p35S	tNOS	CP4 EPSPS	PAT/pat	PAT/bar	Cry1Ab
GTS 40/3/2	Х	Х	Х			
Bt 11	Х	Х		Х		Х
Bt 176	Х				Х	Х
MON 810	Х	Х				Х
GA 21		Х				
T25	Х			Х		
NK 603	Х	Х	Х			
MON 863	Х	Х				
TC1507	Х			Х		
DAS59122	Х			Х		
Bt10	Х	Х		Х		Х
GT73			Х			
MS1/RF2/		х			Х	
MS1xRF2						
MS1/RF1/		х			х	
MS1xRF1						
MS8/RF3/ MS8xRF3		Х			Х	
TOPAS 19/2	Х			Х		
T45	Х			Х		
Falcon GS 40/90	х			х		
MON 1445	Х	Х	Х			
MON 531	Х	Х				Х
LLRICE601	Х				Х	
Bt63		Х				Х
RUR H7-1			Х			

