

The EU-RL GMFF

Update on activities in fulfillment of EU legislation

Marco Mazzara

www.jrc.ec.europa.eu http://ihcpnet.jrc.it/

Serving society Stimulating innovation Supporting legislation

European Union Reference Laboratory for Genetically Modified Food and Feed (EU-RL GMFF)

- Labelling of authorised Genetically Modified Organisms (GMOs)
- Prevent un-authorised GMOs on the European market

Two legal mandates:

- Regulation (EC) No 1829/2003 → validation of methods for detection and quantification of GM events
- Regulation (EC) No 882/2004 → official controls applied to ensure the verification of compliance with feed and food law

Duties and tasks of the EU-RL GMFF as defined by Reg. (EC) No 1981/2006

- the reception, preparation, storage, maintenance and distribution to the members of the European Network of GMO laboratories and NRLS of the appropriate positive and negative control samples
- **evaluating** the data provided by the applicant for authorisation for placing the food or feed on the market, for the purpose of testing and validation of the method for sampling and detection;
- **testing and validating** the method for detection, including sampling and identification of the transformation event and, where applicable, for the detection and identification of the transformation event in the food or feed;
- submitting full evaluation **reports** to the Authority.

The EU-RL GMO: tasks as outlined by Article 32 of Reg. (EC) No 882/2004

- Providing NRL with details of analytical methods
- Coordinating application by NRLs of analytical methods, in particular by organising CT and ensuring follow-up
- Coordinating application of new analytical methods
- Conducting **training** for NRLs and developing countries
- Providing support to COM especially in cases of disputes between MS
- Collaborating with labs in third countries

Method Validation - Definition

- ISO/IEC 17025:2005
- Validation is the confirmation by examination and the provision of objective evidence that the particular requirements for a specific intended use are fulfilled

Terminology

IUPAC: Appendix 2: METHOD-PERFORMANCE STUDY

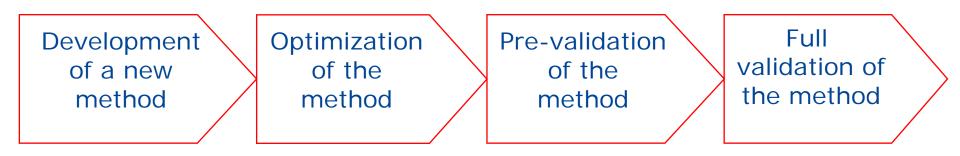
"An interlab study in which all laboratories follow the <u>same</u> written protocol and use the <u>same</u> test method to measure a quantity in sets of identical test items. The results are used to estimate the performance characteristics <u>of the method</u>"

SYNONIMS: Collaborative study, validation study, ring-trial, collaborative trial, full validation......(vs in-house validation)

Terminology

IUPAC Appendix 2: LABORATORY-PERFORMANCE STUDY

"An interlab study that consists of one or more analyses or measurements by a group of laboratories on one or more homogenous, stable test items, by the <u>method selected or</u> <u>used by each laboratory</u>. The results are compared with those or other laboratories or with the known or assigned value, usually with the objective of <u>evaluating or</u> <u>improving laboratory performance</u>"


SYNONIMS: Proficiency testing, Comparative testing

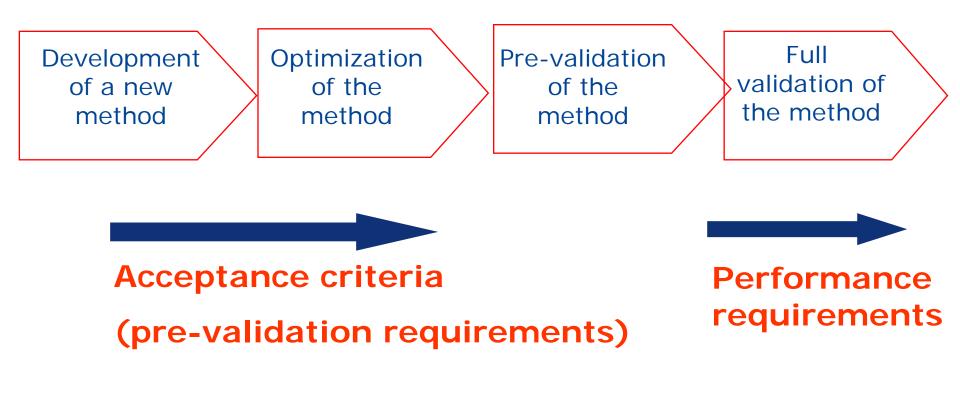
Method Validation

Validation is the conclusion of a long process

Method Validation

a process, not a result...but....

Validated methods often serve to:


- verify compliance to legislative limits with an acceptable variability
- Support decisions (e.g. authorisation of a product, risk management decisions)

Method Validation

Validation is the conclusion of a long process

Joint Research Centre

Methods minimum performance requirements: EU-RL GMFF acceptance criteria and performance requirements

(http://gmo-crl.jrc.ec.europa.eu/guidancedocs.htm)

Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing European Network of GMO Laboratories (ENGL)

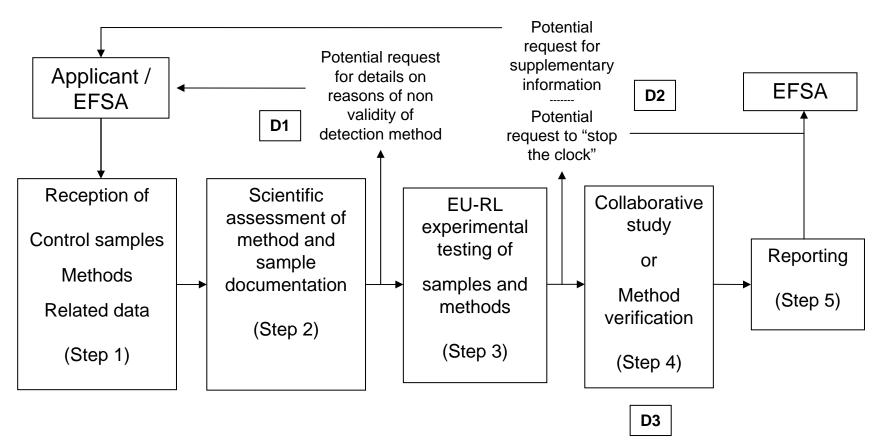
Applicability	Scope of the method, interferences with analytes etc.					
Practicability	Equipment, timing, practical difficulties					
Specificity	Event-specificity					
Dynamic Range	Include the 1/10 and at least 5 times the target concentration					
Accuracy	Within ± 25% of the reference value					
Linearity	≥ 0.98					
PCR efficiency	- 3.1 ≥ slope ≥ 3.6					
RSDr	Below 25% over the whole dynamic range					
LOQ	Less than 1/10 th of the value of the target concentration with an RSDr \leq 25%					
LOD	Less than 1/20 th of the target concentration					
Robustness	Deviate not more than ± 30%					
RSDR	Below 35% at the target concentration; < 50% below 0.2%					
Trueness	Within ± 25 of the accepted reference value over the whole range					

Research Centre

ENGL working groups

Working Group Method Performance Requirements (MPR)

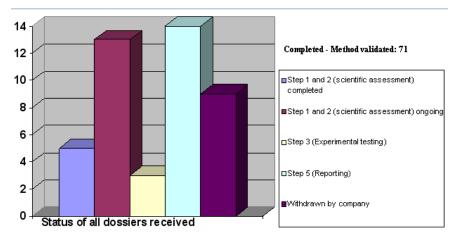
Mandate:


- Review the current MPR doc, enlarge scope to Reg. (EC) No 882/2004
- Establish MPR for qualitative methods, screening and multiplex methods
- Improve/enlarge MPR for DNA extraction methods

Progress: 2/3 of the doc reviewed; concept of "module", new definitions, revision of most of the criteria (specificity, range, RSDr%, LOQ, LOD, efficiency, robustness), criteria for qualitative methods (FN and FP).

Under way: DNA extraction, multiplex (duplex)

The process is a step-by-step procedure and can be stopped or re-initiated as required



Status of Applications Reg. (EC) No 1829/2003

115 received

71 completed (method validated)
14 reporting (step 5)
3 in the lab (step 3):
5 ready for the lab
13 under assessment (step 2):
9 withdrawn

Status of Applications Reg. (EC) No 1829/2003

reporting:

- MON87708; FG72; 40278; AM04-1020; PL73 biomass; GHB614xLLCotton25; NK603xT25; MON87769xMON89788; Ms8xRf3xGT73;
- Bt11xMIR162xMIR604xGA21; Bt11xMIR162xGA21; MON88913xMON15985; 305423x40-3-2

in the lab (step 3):

GHB119; T304-40; 281-24-236x3006-210-23xMON88913

ready for the lab:

- MON87705xMON89788; Bt11xMIR162x1507xGA21; GHB614xT304-
- 40xGHB119; GHB614xLLCotton25xMON15985

under assessment (step 2):

- MON87427; 44406; 073496; YC-1214.6; 5307; MON88302;
- Bt11x59122xMIR604x1507xGA21; PH048;
- Bt11xMIR162xMIR604x1507x5307xGA21; 3272xBt11xMIR604xGA21;
- MON87708xMON89788; 1507x59122xMON810xNK603; AV43-6-G7; 68416

Control Samples

- Prepared and distributed for all methods validated
- Regular shipments to 72 laboratories
- Ad-hoc preparation and distribution in support to emergency measures (unauthorised GMOs)
- Distribution to third countries
- 2722 CS aliquots distributed

EU-RL GMFF Comparative testing

Comparative testing (CT)

Article 32: Regulation (EC) No 882/2004

The EU-RLs for feed and food shall be responsible for:

Coordinating application by the NRLs of analytical methods, in particular by organising comparative testing and by ensuring appropriate follow-up of such comparative testing

Proficiency testing (PT) = comparative testing

Comparative testing

- Advisory board (ENGL experts)
- Collaboration with IRMM
- Online submission of results
- ~ 100 participating laboratories
- 5 rounds so far:

Test materials:

1st: two GM levels of maize NK603

- 2nd: two levels of maize MON810
- 3rd: two levels of RUR soybean

4th: detection and quantification of Maize Events GA21, TC1507 and MIR604; two test items, two levels; screen for 3272, Bt11, Bt176, 59122, GA21, MIR604, MON 810, MON 863, NK603 and TC1507; then quantification. 5th: quantification of maize 59122 and rapeseed GT73, two levels each, genomic DNA

Distribution of participants

Comparative testing (CT)

CT01/11: soybean 40-3-2 in soybean powder; two test items, two levels.

- Preliminary report: 1-4% Z-scores outside satisfactory range
- CT02/11: Detection and Quantification of Maize Events GA21, TC1507 and MIR604; two test items, two levels; screen for 3272, Bt11, Bt176, 59122, GA21, MIR604, MON 810, MON 863, NK603 and TC1507; then quantification.
 - Preliminary report:
 - 4-9% Z-scores outside satisfactory range for GA21
 - 6-5% Z-scores outside satisfactory range for 1507
 - 12-13% Z-scores outside satisfactory range for MIR604

The role of the EU-RL GMFF in response to emergencies regarding un-authorised GMOs

The FU-RL GMFE has a central role in emergency cases for fast validation/verification of detection methods, gathering and provision of specific information to NRLs (e.g. sequence, molecular structure), preparation and distribution of suitable control samples to NRL, preparation of technical guidance documents.

The role of the EU-RL GMFF in response to emergencies regarding unauthorised GMOs

- Decision 2005/317/EC on emergency measures regarding the nonauthorised genetically modified organism Bt10 in maize products
- Decision 2006/754/EC on emergency measures regarding the nonauthorised genetically modified organism LLRICE601 in rice products
- Decision 2008/289/EC on emergency measures regarding the nonauthorised genetically modified organism Bt63 in rice products
- Decision 2011/884/EU on on emergency measures regarding unauthorised genetically modified rice in rice products originating from China
- Other cases, e.g. flax FP967 from Canada, Kefeng6 rice, maize 59132

EU-RL GMFF Guidance on the Application of P-35S, T-NOS and CryIAb/Ac Methods for the Detection of Genetically Modified Rice Originating from China Using Real-Time PCR

21 December 2011

Joint Research Centre Institute for Health and Consumer Protection Molecular Biology and Genomics Unit

EU Harmonisation : Compendium of reference methods for GMO analysis

(V1 Nov. 2010; V2 April 2011 publicly available at http://gmocrl.jrc.ec.europa.eu/gmomethods)

Aim:

Provide an up-to-date reference for all collaborative trial validated methods for the detection of GMO

Concept of Reference Method

REPOR JRC RENCE Compendium of reference methods for GMO analysis European Union Reference Laboratory for GM Food and Feed (EURL-GMFF) European Network of GMO Laboratories (ENGL) 2011 Suropean Union Reference for GM Food & Feer EUR 24526 EN

WWW-Compendium Dbase (Web application)

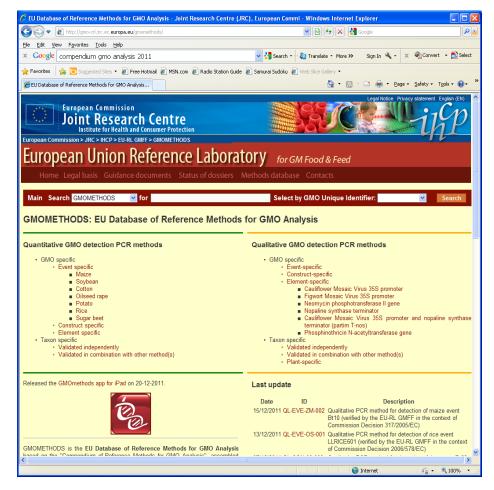
GMOMETHODS: EU Database of Reference Methods for GMO Analysis

publicly available at http://gmo-crl.jrc.ec.europa.eu/gmomethods/

All info + methods retained in the Compendium

Search functions at various levels (event, target, crop ...)

Open access



GMOMETHODS: EU Database of

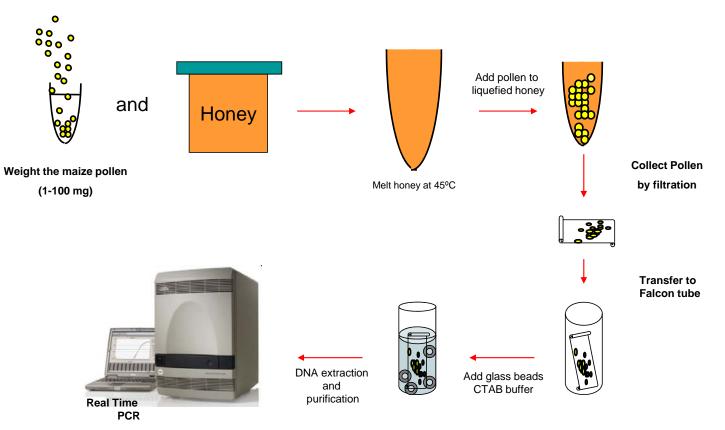
Reference Methods for GMO Analysis <u>http://gmo-</u> <u>crl.jrc.ec.europa.eu/gmomethods/</u>

All info + methods retained in the Compendium

Bablok case

Issues:

- DNA extraction from honey
- method of quantification of pollen in honey
- how to express the GM %
- how to label


Overview of the honey samples used in the study

Sample name Country of origin		Produced by	Period of Harvest	Honey type	Colour	Physical state	
SP0311_HM-ROM-01	Romania	Private production	June 2011	Polyfloral	pale yellow	Liquid	
SP0311_HM-HU-01	Hungary	Private production	September 2011	Polyfloral	amber	Liquid	
SP0311_HM-BIH-01	Bosnia and Herzegovina	Private production	May-August 2011 Polyfloral		light beige	Crystallized	
SP0311_HM-ROM 02	Romania	Private production	June 2011	Monofloral (Tilia)	bright yellow	Liquid	
SP0311_HM-ROM 03	Romania	Private production	September 2011	Monofloral (Rape)	white	Crystallized	
SP0311_HM-HU-02	Hungary	Private production	September 2011	Monofloral (Rape)	white	Crystallized	
SP0311_HM-ITHU-01	Italy, Hungary	G.B. Ambrosoli S.p.A , Ronago (CO) IT	Not indicated	Polyfloral	light brown	Liquid	
SP0311_HM-ITHUARG-01	Argentina, Italy, Hungary	Carrefour, Milano IT	Not indicated	Polyfloral	light brown	Liquid	
SP0311_HM-ITHUARG-02	Argentina, Italy, Hungary	Cavallo srl, Zafferana Etnea (CT) IT	Not indicated	Polyfloral	light beige	Crystallized	
SP0311_HM-FR-01	France	Famille Michaud for Luna di Miele srl, Milano, IT	Not indicated	Monofloral (Acacia)	very pale yellow	Liquid	

Extraction of total DNA of GM pollen from honey

PCR analysis on the commercial honey extracts

Honey	Detection Method	Tested Species	# extractions	DNA yield	Measured Ct-value	Measured T _m - value*	Remarks**	
SP0311_HM-BIH-01	Alcohol dehydrogenase 1 SYBR®Green	Maize	4	4,73±1,91	36,09 ±0,29	75,8	Low amounts of maize pollen detected	
	Cruciferin SYBR®Green	Rapeseed			32,52±0,2	81,1	Low amounts of rapeseed pollen detected	
SP0311_HM-HU-02	Cruciferin SYBR®Green	Rapeseed	2	23,3±2,5	22,63±0,06	80,7	High amounts of rapeseed pollen detected	
SP0311_HM-HU-01	Cruciferin SYBR®Green	Rapeseed	2	15,5±0,5	27,68±0,72	80,3	Moderate amounts of rapeseed pollen detected	
SP0311_HM-ROM 03	Cruciferin SYBR®Green	Rapeseed	2	36,5±2,8	22,69±0,1	80,6	High amounts of rapeseed pollen detected	
SP0311_HM-ROM 01	Alcohol dehydrogenase 1 SYBR®Green	Maize	2	1,1	37,19±0,24	75,9	Low amounts of maize pollen detected	
	Cruciferin SYBR®Green	Rapeseed			36,62±2,08	80,3	Low amounts of rapeseed pollen detected	
SP0311_HM-ROM 02	Cruciferin SYBR®Green	Rapeseed	2	2,3±1,7	29,7±0,2	81	Moderate amounts of rapeseed pollen detected	
SP311_HM-FR-01	Cruciferin SYBR®Green	Rapeseed	2	5,45±3	30,44±0,2	81	Moderate amounts of rapeseed pollen detected	
SP0311_HM-ITHUARG-01	Alcohol dehydrogenase 1 SYBR®Green	Maize			39,32 ±4,28	75,9	Trace amounts of maize pollen detected	
	Cruciferin SYBR®Green	Rapeseed	2	15,4±0,1	29,44±0,21	80,6	Moderate amounts of rapeseed pollen detected	
	Lectin SYBR®Green	Soy			35,06±0,74	80,6	Low amounts of soy pollen detected	
SP0311_HM-ITHUARG-02	Alcohol dehydrogenase 1 SYBR®Green	Maize	2	2	8,25±1,25	38,30±1,69	76	Trace amounts of maize pollen detected
	Cruciferin SYBR®Green	Rapeseed	1		27,70±0,4	80,6	Moderate amounts of rapeseed pollen detected	
SP0311_HM-ITHU-01	Cruciferin SYBR®Green	Rapeseed	2	7,05±1,48	32,40±0,33	80,7	Moderate amounts of maize pollen detected	

Rt-PCR analysis on the GM MON810 spiked honey extracts

Honey	Spike	# extractions	DNA yield	% PCR inhibition	HMG	MON 810	Conclusion
SP0311_HM- BIH-01	450 mg maize pollen (100% GM in mass) 0.9% pollen mass in honey (50g)	4	202,2±66	acceptable	26,72±0,4	28,57±0,4	GMO detected at lower estimated GM ratio
SP0311_HM- BIH-01	50 mg maize pollen (100% GM in mass) 0.1% pollen mass in honey (50g)	4	9,45±1,73	not tested	26,19±0,4	27,79±0,28	GMO detected at correct estimated GM ratio
SP0311_HM- FR-01	100 mg maize pollen (1% GM in mass) 1% pollen mass in honey (10g)	4	12,12±3,15	not tested	30,55±0,62	37,95±0,72	GMO detected at lower estimated GM ratio
SP0311_HM- FR-01	100 mg maize pollen (10% GM in mass) 1% pollen mass in honey (10g)	1	34,7	not tested	24,58±0,008	29,32±0,09	GMO detected at correct estimated GM ratio
SP0311_HM- FR-01	10 mg maize pollen (10% GM in mass) 0.1% pollen mass in honey (10g)	1	3,4	not tested	29,86±0,08	34,24±0,22	GMO detected at correct estimated GM ratio
SP0311_HM- ITHU-01	100 mg maize pollen (0,2% GM in mass) 1% pollen mass in honey (10g)	1	7,3	not tested	27,94±0,4	36,82±0,09	GMO detected at correct estimated GM ratio

PCR inhibition tested on the SP0311_HM-BIH-01: 1.1% and 5.1% for *hmg* and MON810 PCR method respectively

Golden Rice 2

Development of a new Real Time PCR method

Golden Rice 2

- In collaboration with IRRI
- Real-time PCR event-specific method
- New PLD method
- Validation in 2012

Food Anal. Methods DOI 10.1007/s12161-012-9407-5

Kernel Lot Distribution Assessment (KeLDA): a Comparative Study of Protein and DNA-Based Detection Methods for GMO Testing

Marco Mazzara · Claudia Paoletti · Philippe Corbisier · Emanuele Grazioli · Sara Larcher · Gilbert Berben · Marc De Loose · Imma Folch · Christine Henry · Norbert Hess · Lotte Hougs · Eric Janssen · Gillian Moran · Roberta Onori · Guy Van den Eede

Food Anal. Methods DOI 10.1007/s12161-012-9445-z

Testing the Robustness of Validated Methods for Quantitative Detection of GMOs Across qPCR Instruments

E. Luque-Perez • M. Mazzara • T. P. Weber • N. Foti • E. Grazioli • B. Munaro • G. Pinski • G. Bellocchi • G. Van den Eede • C. Savini

