

Setting up a GMO analysis laboratory in a GMO growing and commercialising country – aspects of the production chain quality

Mariana Daher, Eurofins do Brasil

December 2009

- Introduction
- Relevant dimensions (specific customer requirements and cost efficiency)
- Quality dimensions
- Challenges in practice

Eurofins Group - Overview

GeneScan

- Gel based assays vs qualitative realtime Assays,
- Qualitative versus quantitative assays
- Event versus screening assays
- IT infrastructure (documentation effort) and tools (e.g. valid. Excel sheets)
- Automation of sample preparation or PCR setup

Multiplexing

Customer Requirements

Examples:

- Short delivery times (express services)
- Complex analytical strategies, confirmations etc.
 dependent on screening results
- Electronic data exchange (EOL)
- Import and Export Eurofins/GeneScan labs (Germany/USA/Brazil)
- High quality technical support

Quality

- ISO 17025 accreditation Brazil Inmetro
- MAPA accreditation official analysis
- CQB CTNBio (not mandatory) routine analysis
- Proficiency testing schemes
- CRL list of methods and guidance documents for method validation
- ISO 21569:2005, ISO 21570:2005...
 (general and specific GMO testing prerequisites)
- GLP-OECD/Inmetro: Eurofins do Brasil is also in process of GLP recognition – for GMO analysis (before and post-monitoring approvals)

UP-to date information

- Customer consultancy to apply the right systems and the right analytical strategy to be cost efficient
- Cover all relevant GMO (may depend on area/approval situation, origin of product etc.)

Requires

- Suitable method portfolio of validated methods
- Knowing what GMO are relevant (commercially and other)
- Knowing how a given GMO is detectable (analytical screening strategy)
- Knowing about up-coming GMO

Quality – Staff & Infrastructure

GeneScan

Contamination control

- Specifically trained staff (from cleaning personnel to labmanager)
- Specific training aspects (grinding, pipetting, disposing ...)
- Internal "traffic" and air flows
- Number and location of work areas
- All primer, mastermix and standards are produced (ISO9001) and

validated (R&D) by Eurofins/GeneScan GmbH

GeneScan

Process architecture and IT (LIMS)

- To avoid human error
- To improve documentation
- To improve "best practices"

Analytical controls

- •DNA amount (misleading results of OD, fragmentation)
- Positive control (should include extraction process)
- Negative control (enough in number as compared to sample numbers)
- Inhibition control: Prefer low level spiked or quantitative IPC controls

Shortening of DNA Fragments by Heat

Qualitative Analysis

GeneScan

QC Charts as indicators to alert failure

Experience and evaluation of results

- If DNA content is low: Is it method failure or matrix property?
- A positive result could be misleading (e.g. CaMV, soy contamination in corn)
- Quantitative results can only be interpreted in a meaningful way if statistical knowhow is applied – evaluation sheet, controls and expertise

December 2009 Eurofins GeneScan 13

Experience along the Chain

GeneScan

Statistics and matrix experience

Increasing homogeneity / representativity

sensitivity due to DNA removal

Increase number of approved events in Brazil (new strategies)

Crop	# Approved events (CTNBio)
Soy	1
Corn	11 (8 last two year)
Cotton	6

- New approvals at exporter countries
- Country infra-structure for segregation (GMO and Non-GMO)
- Presence of non-approved events (seeds contamination, country boundaries, GMO experimental fileds) – eg: Flax Triffid (Canada)
- Stacked events (3 corn and 2 cotton varieties)
- Reagents and sample importation (Proficiency Tests)

"Real-life" GMO testing

GeneScan

Intelligent strategies for modern GMO testing

suitable methods Step Purpose broad screening for the Element-specific **Screening** presence of GMOs (Modification-specific) Modification-specific exclude non-approved, Identification identify approved GMOs (Event-specific) Event-specific check for labelling Quantification (validated CRL methods) requirements

"Real-life" GMO Testing

GeneScan

→ Finding the right solution

commercial planting

(Asynchronous) approvals

field testing

species

GMO testing Strategy

time pressure

sample type

crosscontamination specific requirements (e.g. organic)

Thank you for your attention!

GeneScan

Mariana C. Daher

marianadaher@eurofins.com.br

www.eurofins.com.br

www.eurofins.com

Special thanks: Dr. Andreas Wurz